Momentum: Difference between revisions

From Spacetime Geometric Algebra
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 5: Line 5:
The inertia tensor $$\mathcal I$$ is given by
The inertia tensor $$\mathcal I$$ is given by


:$$\mathcal I = \gamma \sum {{\begin{bmatrix}
:$$\mathcal I = {\Large\sum} \gamma m{\left[\begin{array}{cccc|ccc|ccc}
-m & 0 & 0 & 0 & 0 & 0 & 0 & -mx & -my & -mz \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & -x & -y & -z \\
0 & m & 0 & 0 & 0 & mz & -my & -mct & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & z & -y & -ct & 0 & 0 \\
0 & 0 & m & 0 & -mz & 0 & mx & 0 & -mct & 0 \\
0 & 0 & 1 & 0 & -z & 0 & x & 0 & -ct & 0 \\
0 & 0 & 0 & m & my & -mx & 0 & 0 & 0 & -mct \\
0 & 0 & 0 & 1 & y & -x & 0 & 0 & 0 & -ct \\
0 & 0 & -mz & my & m(y^2 + z^2) & -mxy & -mzx & 0 & mctz & -mcty \\
\hline
0 & mz & 0 & -mx & -mxy & m(z^2 + x^2) & -myz & -mctz & 0 & mctx \\
0 & 0 & -z & y & y^2 + z^2 & -xy & -zx & 0 & ctz & -cty \\
0 & -my & mx & 0 & -mzx & -myz & m(x^2 + y^2) & mcty & -mctx & 0 \\
0 & z & 0 & -x & -xy & z^2 + x^2 & -yz & -ctz & 0 & ctx \\
-mx & -mct & 0 & 0 & 0 & -mctz & mcty & m(c^2t^2 - x^2) & -mxy & -mzx \\
0 & -y & x & 0 & -zx & -yz & x^2 + y^2 & cty & -ctx & 0 \\
-my & 0 & -mct & 0 & mctz & 0 & -mctx & -mxy & m(c^2t^2 - y^2) & -myz \\
\hline
-mz & 0 & 0 & -mct & -mcty & mctx & 0 & -mzx & -myz & m(c^2t^2 - z^2)
-x & -ct & 0 & 0 & 0 & -ctz & cty & c^2t^2 - x^2 & -xy & -zx \\
\end{bmatrix}}}$$ .
-y & 0 & -ct & 0 & ctz & 0 & -ctx & -xy & c^2t^2 - y^2 & -yz \\
-z & 0 & 0 & -ct & -cty & ctx & 0 & -zx & -yz & c^2t^2 - z^2
\end{array}\right]}$$ .
 
As in classical mechanics, the inertia tensor $$\mathcal I$$ has units of mass &times; length<sup>2</sup>.


== See Also ==
== See Also ==


* [[Velocity]]
* [[Velocity]]

Latest revision as of 01:12, 20 November 2024

The momentum $$\mathbf P$$ is a bivector quantity with the following ten components.

$$\mathbf P = m\mathbf r \wedge \dfrac{d\mathbf r}{d\tau} = \gamma m \left[c \mathbf e_{40} + \dot x \mathbf e_{41} + \dot y \mathbf e_{42} + \dot z \mathbf e_{43} + (y\dot z - z\dot y) \mathbf e_{23} + (z\dot x - x\dot z) \mathbf e_{31} + (x\dot y - y\dot x) \mathbf e_{12} + c(x - \dot x t) \mathbf e_{10} + c(y - \dot y t) \mathbf e_{20} + c(z - \dot z t) \mathbf e_{30} \right]$$

The inertia tensor $$\mathcal I$$ is given by

$$\mathcal I = {\Large\sum} \gamma m{\left[\begin{array}{cccc|ccc|ccc} -1 & 0 & 0 & 0 & 0 & 0 & 0 & -x & -y & -z \\ 0 & 1 & 0 & 0 & 0 & z & -y & -ct & 0 & 0 \\ 0 & 0 & 1 & 0 & -z & 0 & x & 0 & -ct & 0 \\ 0 & 0 & 0 & 1 & y & -x & 0 & 0 & 0 & -ct \\ \hline 0 & 0 & -z & y & y^2 + z^2 & -xy & -zx & 0 & ctz & -cty \\ 0 & z & 0 & -x & -xy & z^2 + x^2 & -yz & -ctz & 0 & ctx \\ 0 & -y & x & 0 & -zx & -yz & x^2 + y^2 & cty & -ctx & 0 \\ \hline -x & -ct & 0 & 0 & 0 & -ctz & cty & c^2t^2 - x^2 & -xy & -zx \\ -y & 0 & -ct & 0 & ctz & 0 & -ctx & -xy & c^2t^2 - y^2 & -yz \\ -z & 0 & 0 & -ct & -cty & ctx & 0 & -zx & -yz & c^2t^2 - z^2 \end{array}\right]}$$ .

As in classical mechanics, the inertia tensor $$\mathcal I$$ has units of mass × length2.

See Also